79 research outputs found

    Self-Stabilizing Supervised Publish-Subscribe Systems

    Full text link
    In this paper we present two major results: First, we introduce the first self-stabilizing version of a supervised overlay network by presenting a self-stabilizing supervised skip ring. Secondly, we show how to use the self-stabilizing supervised skip ring to construct an efficient self-stabilizing publish-subscribe system. That is, in addition to stabilizing the overlay network, every subscriber of a topic will eventually know all of the publications that have been issued so far for that topic. The communication work needed to processes a subscribe or unsubscribe operation is just a constant in a legitimate state, and the communication work of checking whether the system is still in a legitimate state is just a constant on expectation for the supervisor as well as any process in the system

    Kinetic Quantification of Plyometric Take Off, Flight, and Landing Characteristics

    Get PDF
    This study assessed the kinetic characteristics of a variety of plyometric exercises and assessed gender differences therein. Twenty-six men and 23 women performed a variety of plyometric exercises including line hops, 15.24 cm cone hops, squat jumps, tuck jumps, countermovement jumps, loaded countermovement jumps equal to 30% of 1 RM squat, depth jumps normalized to the subjects jump height, and single leg jumps. All plyometric exercises were performed on a force platform. Outcome variables associated with the takeoff, airborne, and landing phase of each plyometric were assessed including the peak ground reaction force during takeoff, time to takeoff, jump height, peak power, peak ground reaction force during landing, and landing rate of force development. A number of differences were found between plyometric exercises

    Dynamic Stabilization During the Landing Phase of Plyometric Exercises

    Get PDF
    This study examined the differences in and the reliability of time to stabilization (TTS) of several plyometric exercises. Twenty six men performed a variety of plyometric exercises representing a continuum of intensities of landing instability, including line hops, cone hops, squat jumps, tuck jumps, countermovement jumps, dumbbell countermovement jumps, and single leg countermovement jumps on a force platform. A repeated measures ANOVA with Bonferroni post hoc corrections was used to evaluate the differences in TTS between plyometric exercises. Practitioners who use plyometrics to train dynamic stability and balance should create programs that progress the intensity of the exercises based on the results of this study. This study also demonstrates that TTS reliability is fair to excellent for a variety of jumping conditions

    Reliability of Surface Electromyography During Maximal Voluntary Isometric Contractions, Jump Landings, and Cutting

    Get PDF
    The reliability of electromyographic (EMG) data has been examined for isometric and slow dynamic tasks, but little is known about the repeatability of this data for ballistic movements. The purpose of this study was to examine the within-session, trial-to-trial reliability of a variety of quadriceps and hamstrings muscles during isometric and ballistic activities. Data were analyzed by way of intraclass correlation coefficients (ICC), intersubject coefficients of variation (CVinter), and intrasubject coefficients of variation (CVintra). Twenty-four subjects performed 3 repetitions each of 2 randomly ordered test exercises, including landing from a depth jump (J) and cutting after a 10-m sprint (C). Data were acquired and processed with root mean square EMG for the muscles assessed, and data were analyzed for each exercise using a repeated measures analysis of variance. Results revealed that all ICC values were greater than 0.80, with most values greater than 0.90, CVinter values ranged from 5.4% to 148.7%, and CVintra values ranged from 11.5% to 49.3%. This study indicates that EMG is a reliable method for assessing the reproducibility of both the quadriceps and hamstrings muscle activation during either isometric or ballistic exercises

    Gender-Based Analysis of Hamstring and Quadriceps Muscle Activation During Jump Landings and Cutting

    Get PDF
    This study evaluated gender differences in the magnitude and timing of hamstring and quadriceps activation during activities that are believed to cause anterior cruciate ligament (ACL) injuries. Twelve men (age = 21.0 ± 1.2 years; body mass = 81.61 ± 13.3 kg; and jump height = 57.61 ± 10.15 cm) and 12 women (age = 19.91 ± 0.9 years; body mass = 64.36 ± 6.14 kg; and jump height = 43.28 ± 7.5) performed 3 repetitions each of the drop jump (jump) normalized to the subject\u27s vertical jump height, and a sprint and cut at a 45-degree angle (cut). Electromyography (EMG) was used to quantify rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), lateral hamstring (LH), and medial hamstrings (MH) activation, timing, activation ratios, and timing ratios before and after foot contact for the jump and cut and normalized to each subject\u27s hamstring and quadriceps maximum voluntary isometric contraction. Data were analyzed using an analysis of variance with results demonstrating that during the postcontact phase of the cut, men demonstrated greater LH and MH activation than women. In the precontact phase of the jump, men showed earlier activation of the VL and VM, than women. Women produced longer RF and VM muscle bursts during the postcontact phase of the cut. Additionally, men showed a trend toward higher hamstring to quadriceps activation ratio than women for the postcontact phase of the cut. This study provides evidence that men are LH dominant during the postcontact phase of the cut compared with women, whereas women sustain RF activation longer than men during this phase. Men activate quadriceps muscles earlier than women in the precontact phase of the jump. Training interventions may offer the potential for increasing the rate and magnitude of hamstring muscle activation. These outcomes should be evaluated using EMG during movements that are similar to those that cause ACL injuries to determine if gender differences in muscle activation can be reduced

    Unified prebiotically plausible synthesis of pyrimidine and purine RNA ribonucleotides

    Get PDF
    Theories about the origin of life require chemical pathways that allow formation of life’s key building blocks under prebiotically plausible conditions. Complex molecules like RNA must have originated from small molecules whose reactivity was guided by physico-chemical processes. RNA is constructed from purine and pyrimidine nucleosides, both of which are required for accurate information transfer. This is the prerequisite for Darwinian evolution. While separate pathways to purines and pyrimidines have been reported, their concurrent syntheses remain a challenge. We report the synthesis of the pyrimidine nucleosides from small molecules and ribose, driven solely by wet-dry cycles. In the presence of phosphate-containing minerals, 5’-mono- and di-phosphates also form selectively in one-pot. The pathway is compatible with purine synthesis, allowing the concurrent formation of all Watson-Crick bases

    Cation exchange synthesis and optoelectronic properties of type II CdTe-Cu2-xTe nano-heterostructures

    Get PDF
    Rod-shaped CdTe-Cu2-xTe nano-heterostructures with tunable dimensions of both sub-units and a type II band alignment were prepared by Cd2+/Cu+ cation exchange. The light absorption properties of the heterostructures are dominated by the excitonic and plasmonic contributions arising, respectively, from the CdTe and the Cu2-xTe sub-units. These results were confirmed over a wide range of sub-unit length fractions through optical modelling based on the discrete dipole approximation (DDA). Although assuming electronically independent sub-units, our modelling results indicate a negligible ground state interaction between the CdTe exciton and the Cu2-xTe plasmon. This lack of interaction may be due to the low spectral overlap between exciton and plasmon, but also to localization effects in the vacancy-doped sub-unit. The electronic interaction between both sub-units was evaluated with pump-probe spectroscopy by assessing the relaxation dynamics of the excitonic transition. In particular, the CdTe exciton decays faster in the presence of the Cu2-xTe sub-unit, and the decay gets faster with increasing its length. This points towards an increased probability of Auger mediated recombination due to the high carrier density in the Cu2-xTe sub-unit. This indication is supported through length-fraction dependent band structure calculations, which indicate a significant leakage of the CdTe electron wavefunction into the Cu2-xTe sub-unit that increases along with the shortening of the CdTe sub-unit, thus enhancing the probability of Auger recombination. Therefore, for the application of type II chalcogenide-chalcogenide heterostructures based on Cu and Cd for photoenergy conversion, a shorter Cu-based sub-unit may be advantageous, and the suppression of high carrier density within this sub-unit is of high importance

    4-Methylumbelliferone improves the thermogenic capacity of brown adipose tissue.

    Get PDF
    Therapeutic increase of brown adipose tissue (BAT) thermogenesis is of great interest as BAT activation counteracts obesity and insulin resistance. Hyaluronan (HA) is a glycosaminoglycan, found in the extracellular matrix, which is synthesized by HA synthases (Has1/Has2/Has3) from sugar precursors and accumulates in diabetic conditions. Its synthesis can be inhibited by the small molecule 4-methylumbelliferone (4-MU). Here, we show that the inhibition of HA-synthesis by 4-MU or genetic deletion of Has2/Has3 improves BAT`s thermogenic capacity, reduces body weight gain, and improves glucose homeostasis independently from adrenergic stimulation in mice on diabetogenic diet, as shown by a magnetic resonance T2 mapping approach. Inhibition of HA synthesis increases glycolysis, BAT respiration and uncoupling protein 1 expression. In addition, we show that 4-MU increases BAT capacity without inducing chronic stimulation and propose that 4-MU, a clinically approved prescription-free drug, could be repurposed to treat obesity and diabetes
    • …
    corecore